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Abstract

Following from recent developments in Hubalek and Kyprianou [30]
the objective of this paper is to provide further methods for construct-
ing new families of scale functions for spectrally negative Lévy pro-
cesses which are completely explicit. This is the result of an obser-
vation in the aforementioned paper which permits feeding the theory
of Bernstein functions directly into the Wiener-Hopf factorization for
spectrally negative Lévy processes. Many new, concrete examples of
scale functions are offered although the methodology in principle de-
livers still more explicit examples than those listed.

1 Spectrally negative Lévy processes and scale
functions

Let X = {Xt : t ≥ 0} be a Lévy process defined on a filtered probability
space (Ω,F ,P), where {Ft : t ≥ 0} is the filtration generated by X satisfying
the usual conditions. For x ∈ R denote by Px the law of X when it is started
at x and write simply P0 = P. Accordingly we shall write Ex and E for the
associated expectation operators. In this paper we shall assume throughout
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that X is spectrally negative meaning here that it has no positive jumps and
that it is not the negative of a subordinator. It is well known that the latter
allows us to talk about the Laplace exponent ψ(θ) := log E[eθX1 ] for θ ≥ 0
where in particular we have the Lévy-Khintchine representation

ψ(θ) = −aθ +
1

2
σ2θ2 +

∫
(−∞,0)

(eθx − 1− xθ1{x>−1})Π(dx) (1)

where a ∈ R, σ ≥ 0 is the Gaussian coefficient and Π is a measure concen-
trated on (−∞, 0) satisfying

∫
(−∞,0)

(1∧x2)Π(dx) <∞. The, so-called, Lévy
triple (a, σ,Π) completely characterizes the process X.

For later reference we also introduce the function Φ : [0,∞) → [0,∞) as
the right inverse of ψ on (0,∞) so that for all q ≥ 0

Φ(q) = sup{θ ≥ 0 : ψ(θ) = q}.

Note that it is straightforward to show that ψ is a strictly convex function
which is zero at the origin and tends to infinity at infinity and hence there
are at most two solutions of the equation ψ(θ) = q.

Suppose now we define the stopping times for each x ∈ R

τ+
x = inf{t > 0 : Xt > x} and τ−x = inf{t > 0 : Xt < x}.

A fluctuation identity with a long history concerns the probability that X
exits an interval [0, a] (where a > 0) into (a,∞) before exiting into (−∞, 0)
when issued at x ∈ [0, a]. In particular it is known that

Ex(e
−qτ+

a 1{τ+
a <τ−0 }

) =
W (q)(x)

W (q)(a)
(2)

where x ∈ (−∞, a], q ≥ 0 and the function W (q) : R → [0,∞) is defined
up to a multiplicative constant as follows. On (−∞, 0) we have W (q)(x) = 0
and otherwise W (q) is a continuous function (right continuous at the origin)
with Laplace transform∫ ∞

0

e−θxW (q)(x)dx =
1

ψ(θ)− q
for θ > Φ(q).

The functions {W (q) : q ≥ 0} are known as scale functions and for conve-
nience and consistency we write W in place of W (0). Identity (2) exemplifies
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the relation between scale functions for q = 0 and the classical ruin problem.
Indeed setting q = 0 we have that Px(τ

−
0 < τ+

a ) = 1 −W (x)/W (a) and so
assuming that ψ′(0+) > 0 and taking limits as a ↑ ∞ it is possible to deduce
that W (∞)−1 = ψ′(0+) and hence

Px(τ
−
0 <∞) = 1− ψ′(0+)W (x).

It is in this context of ruin theory that they make their earliest appearance
in the works of [64], [61] and then later either explicitly or implicitly in the
work of [24] and [36, 37], [60] and [53], the real value of scale functions as a
class with which one may express a whole range of fluctuation identities for
spectrally negative Lévy processes became apparent in the work of [14, 15]
and [7, 8] and an ensemble of subsequent articles; see for example [43], [3],
[47, 48, 49, 50], [40], [20] and [19, 21, 22]. Moreover with the advent of
these new fluctuation identities and a better understanding of the analytical
properties of the function W (q) came the possibility of revisiting and solving
a number of classical and modern problems from applied probability, but now
with the underlying source of randomness being a general spectrally negative
Lévy processes. For example, in the theory of optimal stopping [2, 3] and
[39], in the theory of optimal control [4], [41, 51] and [46], in the theory of
queuing and storage models [23] and [5], in the theory of branching processes
[11], [31] and [44], in the theory of insurance risk and ruin [17], [35], [34],
[20], [40], [51] and [46], in the theory of credit risk [29] and [42] and in the
theory of fragmentation [38].

Although scale functions are now firmly embedded within the theory of
spectrally negative Lévy processes and their applications, and although there
is a reasonable understanding of how they behave analytically (see for exam-
ple the summary in [39]), one of their main failings from a practical point
of view until recently is that there are a limited number of concrete exam-
ples. None the less, Hubalek and Kyprianou [30] have been able to describe
a parametric family of scale functions in explicit detail using a mathemati-
cal trick in which a spectrally negative Lévy process is constructed having a
particular pre-determined Wiener-Hopf factorization.

In this paper, we make use of the aforementioned trick and combine it
with classical and recent developments in the potential analysis of subordi-
nators. Stemming from the latter, the theory of special Bernstein functions
feed directly into the theory of scale functions and brings about the exis-
tence of pairs of spectrally negative Lévy processes whose scale functions are
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conjugate to one another in an appropriate sense.
Following an analytical exposition of the latter concepts, we are able to

offer completely new explicit examples of conjugate pairs of scale functions.
According to Lemma 8.4 in [39], for any q > 0, the q-scale function of a

spectrally negative Lévy process can be obtained via the 0-scale function of
a spectrally negative Lévy process that drifts to ∞, whose law is obtained
by an exponential change of measure of the law of the original Lévy process.
From the theoretical point of view this allows us to restrict our study to
only the case q = 0. Nevertheless, from the point of view of applications
this represents a restriction given that to make such construction tractable
one needs to know explicitly the bivariate Laplace exponent associated to
the descending ladder process, its potential measure and the inverse of the
Laplace exponent ψ, which in general is an open problem.

In the sequel we will assume, unless otherwise stated, that the spectrally
negative Lévy process does not drift to −∞. The reason for this is that the
0-scale function of a Lévy processes drifting to −∞ can be deduced from the
0-scale function corresponding to the associated Lévy process conditioned to
drift to ∞. This will be made precise in Section 4 below.

2 Descending ladder height and parent processes
The principal idea for generating new examples of scale functions in Hubalek
and Kyprianou [30], which we borrow here, relies on constructing a spectrally
negative Lévy process around a given possibly killed subordinator which plays
the role of the descending ladder height process. For the convenience of the
reader we devote a little time in this section reminding the reader of the
meaning of a descending ladder height process and give the result of [30] in
detail.

It is straightforward to show that the process X−X := {Xt−X t : t ≥ 0},
where X t := infs≤tXs, is a strong Markov process with state space [0,∞).
Following standard theory of Markov local times (cf. Chapter IV of [7]), it
is possible to construct a local time at zero for X −X which we henceforth
refer to as L = {Lt : t ≥ 0}. Its inverse process, L−1 := {L−1

t : t ≥ 0} where
L−1

t = inf{s > 0 : Ls > t}, is a (possibly killed) subordinator. Sampling
X at L−1 we recover the points of minima of X. If we define Ht = XL−1

t

when L−1
t < ∞, with Ht = ∞ otherwise, then it is known that the process

H = {Ht : t ≥ 0} is a (possibly killed) subordinator. The latter is known as
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the descending ladder height process. Moreover, if Υ is the jump measure of
H then

Υ(x,∞) = eΦ(0)x

∫ ∞

x

e−Φ(0)uΠ(−∞,−u)du for x > 0,

see for example [63]. Further, the subordinator has a drift component if and
only if σ > 0 in which case the drift is necessarily equal to σ2/2. The killing
rate of H is given by the constant E(X1)∨0 = ψ′(0+)∨0. Observe that in the
particular case where Φ(0) = 0 the jump measure of H has a non-increasing
density.

The starting point for the relationship between the descending ladder
height process and scale functions is given by the Wiener-Hopf factorization.
In ‘Laplace form’, for spectrally negative Lévy processes, this can be written
as

ψ(θ) = (θ − Φ(0))φ(θ), θ ≥ 0, (3)

where φ(θ) = − log E(e−θH1). In the special case that Φ(0) = 0, that is to
say, the process X does not drift to −∞ or equivalently that ψ′(0+) ≥ 0, it
can be shown that the scale function W describes the potential measure of
H. In other words∫ ∞

0

dt · P(Ht ∈ dx) = W (dx) for x ≥ 0 (4)

or equivalently ∫ ∞

0

e−θxW (dx) =
1

φ(θ)
for θ > 0. (5)

We henceforth restrict the discussion to the case that Φ(0) = 0, see however
Section 4.

The following theorem, taken from Hubalek and Kyprianou [30], shows
how one may identify a spectrally negative Lévy process X (called the parent
process) for a given descending ladder height process H. An equivalent result
has been obtained in Proposition 7 in [10]. Note that the version of the
theorem we present here constructs the parent process such that it does not
drift to −∞. However, this is not a necessary restriction in the original
formulation of this result.
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Theorem 1. Suppose that H is a subordinator, killed at rate κ ≥ 0, with
jump measure which is absolutely continuous with non-increasing density, say
υ, and drift d. Then there exists a spectrally negative Lévy process X that
does not drift to −∞, henceforth referred to as the parent process, whose
descending ladder height process is the process H. The Lévy triple (a, σ,Π) of
the parent process is uniquely identified as follows. The Gaussian coefficient
is given by

σ =
√

2d.

The Lévy measure is given by

Π(−∞,−x) = υ(x), for x > 0.

Finally

a =

∫
(−∞,−1)

xΠ(dx)− κ.

The Laplace exponent of the parent process is also given by

ψ(θ) = θφ(θ)

for θ ≥ 0 where φ(θ) = − log E(e−θH1). The parent process oscillates or drifts
to ∞ according to whether φ(0) = 0 or > 0.

Note that when describing parent processes later on in this text, for prac-
tical reasons we shall prefer to specify the triple (σ,Π, ψ) instead of (a, σ,Π).
However both triples provide an equivalent amount of information.

3 Special and conjugate scale functions
In this section we introduce the notion of a special Bernstein functions and
special subordinators and use the latter to justify the existence of pairs of so
called conjugate scale functions which have a particular analytical structure.
We refer the reader to the lecture notes of Song and Vondraček [58] and the
books of Berg and Forst [6] and Jacob [32] for a more complete account of
the theory of Bernstein functions and their application in potential analysis.

Recall that the class of Bernstein functions coincides precisely with the
class of Laplace exponents of possibly killed subordinators. That is to say, a
general Bernstein function takes the form

φ(θ) = κ+ dθ +

∫
(0,∞)

(1− e−θx)Υ(dx) for θ ≥ 0 (6)
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where κ ≥ 0, d ≥ 0 and Υ is a measure concentrated on (0,∞) such that∫
(0,∞)

(1 ∧ x)Υ(dx) <∞.

Definition 1. Suppose that φ(θ) is a Bernstein function, then it is called a
special Bernstein function if

φ(θ) =
θ

φ∗(θ)
, θ ≥ 0, (7)

where φ∗(θ) is another Bernstein function. Accordingly a possibly killed
subordinator is called a special subordinator if its Laplace exponent is a
special Bernstein function.

Note that if φ is a special Bernstein function with representation as given
in (7) then one says that the Bernstein function φ∗ is conjugate to φ. More-
over it is apparent from its definition that φ∗ is a special Bernstein function
and φ is conjugate to φ∗. In [26] and [59] it is shown that a sufficient con-
dition for φ to be a special subordinator is that Υ(x,∞) is log-convex on
(0,∞).

For conjugate pairs of special Bernstein functions φ and φ∗ we shall write
in addition to (7)

φ∗(θ) = κ∗ + d∗θ +

∫
(0,∞)

(1− e−θx)Υ∗(dx), θ ≥ 0, (8)

where necessarily Υ∗ is a measure concentrated on (0,∞) satisfying
∫

(0,∞)
(1∧

x)Υ∗(dx) < ∞. One may express the triple (κ∗, d∗,Υ∗) in terms of related
quantities coming from the conjugate φ. Indeed it is known that

κ∗ =

{
0 κ > 0(
d +

∫
(0,∞)

xΥ(dx)
)−1

κ = 0

and
d∗ =

{
0 d > 0 or Υ(0,∞) = ∞
(κ+ Υ(0,∞))−1 d = 0 and Υ(0,∞) <∞.

(9)

Which implies in particular that κκ∗ = 0 = dd∗. In order to describe the
measure Υ∗ let us denote by W (dx) the potential measure of φ. (This choice
of notation will of course prove to be no coincidence). Then we have that W
necessarily satisfies

W (dx) = d∗δ0(dx) + {κ∗ + Υ∗(x,∞)}dx for x ≥ 0.

7



 
 

Naturally, if W ∗ is the potential measure of φ∗ then we may equally describe
it in terms of (κ, d,Υ). A proof of these facts and other interesting results
can be found in [57]. Besides, it can be easily shown that a necessary and
sufficient condition for a function to be a special Bernstein function is that
its potential measure has a density on (0,∞) which is non-increasing and
integrable in the neighborhood of the origin; see e.g. [9] Corollaries 1 and 2
for a proof of this fact.

We are interested in constructing a parent process whose descending lad-
der height process is a special subordinator. The first parts of the following
theorem and corollary are now evident given the discussion in the current
and previous sections.

Theorem 2. For conjugate special Bernstein functions φ and φ∗ satisfying
(6) and (8) respectively where Υ is absolutely continuous with non-increasing
density, there exists a spectrally negative Lévy process that does not drift to
−∞, whose Laplace exponent is described by

ψ(θ) =
θ2

φ∗(θ)
= θφ(θ) for θ ≥ 0 (10)

and whose scale function is a concave function and is given by

W (x) = d∗ + κ∗x+

∫ x

0

Υ∗(y,∞)dy. (11)

Conversely, if ψ is the Laplace exponent of a spectrally negative Lévy process
that does not drift to −∞ and its associated scale function, W, is a concave
function then there exists a pair of conjugate Bernstein functions φ and φ∗,
satisfying (6) and (8) respectively, where Υ is absolutely continuous with
non-increasing density, and such that the relations (10) and (11) hold.

Proof. Only the second part of the theorem needs a proof. Let ψ and W be
as described in the second part of the statement of the theorem and let φ
denote the Laplace exponent of the descending ladder height subordinator
associated to the spectrally negative Lévy process with Laplace exponent ψ.
The latter and former functions are related via (3) with Φ(0) = 0. By an
integration by parts it follows that

θ

∫ ∞

0

e−θxW (x)dx = W (0+) +

∫ ∞

0

W ′(y)e−θydy =
1

φ(θ)
, θ ≥ 0,
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where W ′ denotes the first derivative of W, which exists almost everywhere
because of the concavity of W. This implies in particular that in (0,∞)
the potential measure of the descending ladder height subordinator has a
density which is non-increasing as well as an atom at zero of size W (0+).
Furthermore, again by an integration by parts it follows that

θ2

∫ ∞

0

e−θxW (x)dx

= θW (0) + θ

∫ ∞

0

W ′(y)e−θydy

= W ′(∞) + θW (0) +

∫ ∞

0

(
1− e−θy

)
d (−W ′(y)) , θ ≥ 0.

(12)

So, that the function φ∗ defined by

φ∗(θ) =
θ2

ψ(θ)
=

θ

φ(θ)
, θ ≥ 0,

is a special Bernstein function conjugated to φ.

Note that the proof of the converse statement in Theorem 2 says a little
more than is claimed. Indeed we have that the potential measure of the
subordinator with Laplace exponent φ∗, in (0,∞), admits a density which
is decreasing and convex. To see this, one should recall that the potential
measure associated to φ∗ has a decreasing density which is given by the tail
Lévy measure of φ, and since ψ(θ) = θφ(θ), θ ≥ 0 it follows by an integration
by parts that the Lévy measure of φ has a decreasing density.

The assumptions of the previous theorem require only that the Lévy and
potential measures associated to φ have a non-increasing density in (0,∞),
respectively; this condition on the potential measure is equivalent to the
existence of φ∗. If in addition it is assumed that the potential density be a
convex function, in light of the representation (11), we can interchange the
roles of φ and φ∗, respectively, in the previous Theorem. The key issue to
this additional assumption is that it ensures the absolute continuity of Υ∗

with a non-increasing density. We thus have the following Corollary.

Corollary 1. If conjugate special Bernstein functions φ and φ∗ exist sat-
isfying (6) and (8) such that both Υ and Υ∗ are absolutely continuous with
non-increasing densities, then there exist a pair of scale functions W and
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W ∗, such that W is concave, its first derivative is a convex function, (11) is
satisfied, and

W ∗(x) = d + κx+

∫ x

0

Υ(y,∞)dy (13)

whose parent processes are given by (10) and

ψ∗(θ) =
θ2

φ(θ)
= θφ∗(θ). (14)

Conversely, if ψ is the Laplace exponent of a spectrally negative Lévy process
such that its associated scale function W is a concave function whose first
derivative is a convex function, then there exists a pair of conjugate Bernstein
functions φ and φ∗ and a function ψ∗, such that ψ∗ is the Laplace exponent
of a spectrally negative Lévy process, and ψ (respectively ψ∗) is related to
φ∗ (respectively to φ) by equation (10) (respectively by (14)) and the scale
functions associated to ψ and ψ∗ satisfy equations (11) and (13), respectively.

Proof. The first part of the proof is a simple consequence of Theorem 2. The
converse part follows from the calculations used in the proof of Theorem 2.
Indeed, if ψ and W are as described in the converse statement of the corollary
then it follows from Theorem 2 that there exists a pair of conjugate Bernstein
functions φ and φ∗ and by hypotheses and equation (12) that the respective
Lévy measure of φ and φ∗ have non-increasing densities. That the function
ψ∗ defined by ψ∗(θ) = θφ∗(θ), θ ≥ 0, is the Laplace exponent of a spectrally
negative Lévy process is then a consequence of Theorem 1. It follows from
Theorem 2 and the uniqueness of Laplace transform that the scale functions
associated to ψ and ψ∗ have the claimed properties.

There are a number of remarks that are worth making regarding the above
theorem in the setting of conjugate special Bernstein functions.

1. For obvious reasons we shall henceforth refer to the scale functions
identified in (6) and (8) as special scale functions.

2. Similarly, when W and W ∗ exist then we refer to them as conjugate
(special) scale functions and their respective parent processes are called
conjugate parent processes. This conjugation can be seen by noting that
thanks to (7).

W ∗W ∗(dx) = dx.
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3. It is known (cf. Chapter 8 of [39]) that any scale function has a dis-
continuity at the origin if and only if the parent process has paths of
bounded variation. That is to say, in the representation (1), σ = 0 and∫

(−1,0)
|x|Π(dx) < ∞. Taking account of the description in Theorem 1

one may easily deduce that in terms of the descending ladder height
process this is equivalent with the fact that Υ(0,∞) < ∞ and d = 0
which, within the context of Theorem 2, is equivalent to the case that
d∗ > 0 in (9) as predicted by the general theory.

4. Another known general property of scale functions is that W ′(0+) <∞
if and only if, in the representation (1), σ > 0 or σ = 0 and Π(−∞, 0) <
∞. See e.g. Exercise 8.5 in [39]. The latter conditions in terms of the
descending ladder height process are respectively equivalent to d > 0
or d = 0 and dΥ(0+)/dx <∞.

4 Tilting and parent processes drifting to −∞
In this section we present two methods for which, given a scale function and
associated parent process, it is possible to construct further examples of scale
functions by appealing to two procedures.

The first method relies on the following facts concerning translating the
argument of a given Bernstein function.

Lemma 1. Let φ be a special Bernstein function with representation given
by (6). Then for any β ≥ 0 the function φβ(θ) = φ(θ + β), θ ≥ 0, is also a
special Bernstein function with killing term κβ = φ(β), drift term dβ = d and
Lévy measure Υβ(dx) = e−βxΥ(dx), x > 0. Its associated potential measure,
Wβ, has a decreasing density in (0,∞) such that Wβ(dx) = e−βxW ′(x)dx,
x > 0, where W ′ denotes the density of the potential measure associated to φ.
Moreover, let φ∗ and φ∗β, denote the conjugate Bernstein functions of φ and
φβ, respectively. Then the following identity

φ∗β(θ) = φ∗(θ+β)−φ∗(β)+β

∫ ∞

0

(
1− e−θx

)
e−βxW ′(x)dx, θ ≥ 0, (15)

holds.

Proof. We will use the theory of change of mesure for Lévy processes; for
background on this topic see e.g. [55] Section 33. Assume that under P,
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H is a subordinator with Laplace exponent φ. It follows from the indepen-
dence and homogeneity of the increments of H that the process Mt = e−βHt ,
t ≥ 0, is a submartingale in the natural filtration generated by H. Moreover,
limt→0+ E

(
e−βHt

)
= 1. It follows that the function hβ(x) := e−βx, x ∈ [0,∞],

under the assumption that e−∞ = 0, is an excessive function for the semi-
group of the process H. We denote by P(β) the law of the h-transform of P via
the excessive function hβ, that is P(β) is the unique measure over the space
of right continuous left-limited with lifetime paths such that

P(β) = MtP over σ(Hs, s ≤ t), for t ≥ 0.

It is easily verified that under P(β) the law ofH is that of a subordinator killed
at rate φ(β). Indeed, as P(β) is locally absolutely continuous with respect to
P it follows that under P(β), H has non-decreasing paths and for s, t ≥ 0

E(β)
(
e−θ(Ht+s−Ht)1A

)
= E

(
e−(θ+β)(Ht+s−Ht)e−βHt1A

)
= E

(
e−(θ+β)Hs

)
E(1Ae

−βHt)

= e−sφ(θ+β)E(β)(1A),

for every θ ≥ 0 and A ∈ σ(Hu, u ≤ t). Which proves at once that under
P(β), H has independent and homogeneous increments, its Laplace exponent
is given by φβ(·) = φ(β + ·), and its killing term is thus φβ(0) = φ(β).
Moreover, the equality

φβ(θ) = φ(β) + θd +

∫ ∞

0

(e−βx − e−(β+θ)x)Υ(dx)

= φ(β) + θd +

∫ ∞

0

(1− e−θx)e−βxΥ(dx), θ ≥ 0,

justifies the description of the characteristics of φβ claimed in the Lemma 1.
Furthermore, the potential of the process H under P(β) is given by

E(β)

(∫ ∞

0

1{Ht∈dx}dt

)
=

∫ ∞

0

E(β)
(
1{Ht∈dx}

)
dt =

∫ ∞

0

E
(
1{Ht∈dx}e

−βHt
)
dt

= E
(∫ ∞

0

e−βHt1{Ht∈dx}dt

)
= d∗δ0(dx) + e−βxW ′(x)dx,

for x ≥ 0, owing to Fubini’s Theorem. Given that the function x 7→
e−βxW ′(x), x > 0 is a decreasing function, it follows that φβ is a special

12



 
 

Bernstein function. Furthermore, following the description in Section 3 the
characteristics of its conjugate, φ∗β are given as follows: its killing term is
κ∗β = 0, as kβ = φ(β) > 0, the tail of its Lévy measure is given by

Υ∗
β(x,∞) = e−βxW ′(x), x > 0,

and its drift equals d∗ as

d∗β = lim
θ→∞

φ∗β(θ)

θ
= lim

θ→∞

1

φ(β + θ)
= lim

θ→∞

1

φ(θ)
= d∗,

in the obvius notation. The description in (15) follows by bare-hands calcu-
lations using the latter facts.

Note in particular that if Υ has a non-increasing density then so does Υβ.
Moreover, if W ′ convex (equivalently Υ∗ has a non-increasing density) then
W ′

β is convex (equivalently Υ∗
β has a non-increasing density). These facts

lead us to the following Lemma.

Lemma 2. If conjugate special Bernstein functions φ and φ∗ exist satisfying
(6) and (8) such that both Υ and Υ∗ are absolutely continuous with non-
increasing densities, then there exist conjugate parent processes with Laplace
exponents

ψβ(θ) = θφβ(θ) and ψ∗β(θ) = θφ∗β(θ), θ ≥ 0.

whose respective scale functions are given by

Wβ(x) = d∗ +

∫ x

0

e−βyΥ∗(y,∞)dy, x ≥ 0.

and
W ∗

β (x) = d + φ(β)x+

∫ x

0

(∫ ∞

y

e−βzΥ(dz)

)
dy. (16)

using obvious notation.

The second method builds on the latter to construct examples of scale
functions whose parent processes drift to −∞.

Suppose that φ is a Bernstein function such that φ(0) = 0, its associated
Lévy measure has a decreasing density and let β > 0. Theorem 1, as stated
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in its more general form in [30], says that there exists a parent process, say
X, that drifts to −∞ such that its Laplace exponent ψ can be factorized as

ψ(θ) = (θ − β)φ(θ), θ ≥ 0.

It follows that ψ is a convex function and ψ(0) = 0 = ψ(β), so that β is
the largest positive solution to the equation ψ(θ) = 0. Now, let Wβ be the
0-scale function of the spectrally negative Lévy process, say Xβ, with Laplace
exponent ψβ(θ) := ψ(θ+β), for θ ≥ 0. It is known that the Lévy process Xβ

is obtained by an exponential change of measure and can be seen as the Lévy
process X conditioned to drift to ∞, see chapter VII in [7]. Thus the Laplace
exponent ψβ can be factorized as ψβ(θ) = θφβ(θ), for θ ≥ 0, where, as before,
φβ(·) := φ(β+ ·). It follows from Lemma 8.4 in [39], that the 0-scale function
of the process with Laplace exponent ψ is related to Wβ by

W (x) = eβxWβ(x), x ≥ 0.

The above considerations thus lead to the following result which allows for
the construction of a second parent process and associated scale function over
and above the pair described in Theorem 2.

Lemma 3. Suppose that φ is a special Bernstein function satisfying (6) such
that Υ is absolutely continuous with non-increasing density and κ = 0. Fix
β > 0. Then there exists a parent process with Laplace exponent

ψ(θ) = (θ − β)φ(θ), θ ≥ 0

whose associated scale function is given by

W (x) = d∗eβx + eβx

∫ x

0

e−βyΥ∗(y,∞)dy, x ≥ 0,

where we have used our usual notation.

Now, when we assume furthermore that the potential density associated
to φ is a decreasing and convex function, or equivalently that the Lévy mea-
sure of φ∗ has a decreasing density, there are three choices for a conjugate
parent process. The first, is the one appearing in Lemma 2 with Laplace
exponent given by ψ∗β(θ) = θφ∗β(θ), for θ ≥ 0, and its scale function, W ∗

β ,
is described in equation (16). This parent process drifts to ∞. The scale
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functions Wβ and W ∗
β are conjugated in the sense described in Remark 2 in

Section 3, which implies that

d(e−βxW (x)) ∗ dW ∗
β (x) = dx, x ≥ 0.

The second and third candidate parent process, based on φ∗(θ) are the one
drifting to −∞, constructed using the formulation above, and the one which
drifts to ∞ described in Corollary 1, accordingly as φ∗(0) = 0 or φ∗(0) > 0,
respectively. For these parent processes the respective scale functions are
such that

e−βxdx =

{
d

(
e−βxW (x)

)
∗ d

(
e−βxW ∗(x)

)
, if φ∗(0) = 0,

d(e−βxW (x)) ∗ (e−βxW ∗(dx)), if φ∗(0) > 0,
x ≥ 0.

Remark 1. Observe that the construction explained in this section can be
performed as soon as there exists a β > 0 such that the function θ 7→ φ(β+θ)
is a special Bernstein function with a non-increasing Lévy density. Which in
view of the calculations carried in the proof of Lemma 1 could occur without
φ being a special Bernstein function in itself.

5 Complete scale functions
We begin by introducing the notion of a complete Bernstein function with a
view to constructing scale functions whose parent processes are derived from
descending ladder height processes with Laplace exponents which belong to
the class of complete Bernstein functions.

Definition 2. A function φ is called complete Bernstein function if there
exists an auxiliary Bernstein function η such that

φ(θ) = θ2

∫
(0,∞)

e−θxη(x)dx. (17)

It is well known that a complete Bernstein function is necessarily a special
Bernstein function (cf. [32]) and in addition, its conjugate is also a complete
Bernstein function. Moreover, from the same reference one finds that a ne-
cessary and sufficient condition for φ to be complete Bernstein is that Υ
satisfies for x > 0

Υ(dx) =

{∫
(0,∞)

e−xyγ(dy)

}
dx
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where
∫

(0,1)
1
y
γ(dy) +

∫
(1,∞)

1
y2γ(dy) < ∞. Equivalently Υ has a completely

monotone density. Another necessary and sufficient condition is that the
potential measure associated to φ has a density on (0,∞) which is completely
monotone, this is a result due to Kingman [33] and Hawkes [27]. The class of
infinitely divisible laws and subordinators related to this type of Bernstein
functions has been extensively studied by several authors, see e.g. [12], [62],
[54], [18], [45] and the references therein.

Since necessarily Υ is absolutely continuous with a completely monotone
density, it follows that any subordinator whose Laplace exponent is a com-
plete Bernstein function may be used in conjunction with Corollary 1. The
following result is now a straightforward application of the latter and the fact
that from (17), any Bernstein function η has a Laplace transform (θ2/φ(θ))−1

where φ is complete Bernstein.

Corollary 2. Let η be any Bernstein function and suppose that φ is the
complete Bernstein function associated with the latter via the relation (17).
Write φ∗ for the conjugate of φ and η∗ for the Bernstein function associated
with φ∗ via the related (17). Then

W (x) = η∗(x) and W ∗(x) = η(x), x ≥ 0.

are conjugate scale functions with conjugate parent processes whose Laplace
exponents are given by

ψ(θ) =
θ2

φ∗(θ)
= θφ(θ) and ψ∗(θ) =

θ2

φ(θ)
= θφ∗(θ), θ ≥ 0.

We conclude this section with some remarks about the above corollary.

1. For notational consistency we call the pair W and W ∗ (conjugate) com-
plete scale functions and their respective parent processes (conjugate)
complete parent processes

2. In essence only part of the above corollary is of practical value. That is
to say, any given Bernstein function η is a scale function whose parent
process is the spectrally negative Lévy process whose Laplace exponent
is given by ψ∗(θ) = θ2/φ(θ) where φ is given by (17).

3. Observe that any given completely monotone function say p : [0,∞[→
[0,∞], such that

∫ 1

0
p(s)ds <∞, may be seen as the potential density
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of a subordinator. This is due to the fact that any such function is
log-convex, owing to Hölder’s inequality, and then by a result due to
Hirsch [28] there exists a subordinator, say H, whose potential measure
admits p as a density in (0,∞), see also [59] for a recent proof of the
latter fact. Let φ be the Laplace exponent of H, this is such that the
tail of its Lévy measure is a completely monotone function that we will
denote by p∗. Thus,

∫ 1

0
p∗(s)ds <∞ and

φ(θ)

θ
= d +

κ

θ
+

∫ ∞

0

e−θyp∗(y)dy, θ ≥ 0.

It follows from Corollary 2 that there exists a spectrally negative Lévy
process with Laplace exponent ψ(θ) = θφ(θ) for θ ≥ 0, its associated
scale function is a Bernstein function, and can be represented as

W (x) = d∗ + κ∗x+

∫ ∞

0

(1− e−xy)
γ(dy)

y
, x ≥ 0;

under the assumption that p admits the representation

p(x) = κ∗ +

∫ ∞

0

e−xyγ(dy), x ≥ 0,

where κ∗ ≥ 0 and γ is a measure over (0,∞) such that∫ 1

0

γ(dy) +

∫ ∞

1

γ(dy)

y
<∞, equivalently

∫ 1

0

p(t)dt <∞.

For the respective conjugates we have that

φ∗(θ) = κ∗ + d∗θ +

∫ ∞

0

θ

θ + y
γ(dy), θ ≥ 0,

σ∗ =
√

2d∗, a∗ =

∫ ∞

0

ye−yγ(dy) + p(1)− κ∗,

Π∗(−∞,−x) =

∫ ∞

0

ye−xyγ(dy), x > 0,

and therefore,

W ∗(x) = d + κx+

∫ x

0

p∗(y)dy, x ≥ 0.
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Finally, owing to Remark 2 in Section 3, if d = 0 = d∗, the functions p
and p∗ are related by the Volterra-type equation∫ y

0

p(x)p∗(y − x)dx = 1 =

∫ y

0

p∗(x)p(y − x)dx, y ≥ 0.

4. Another source of examples comes from the observation that if ϕ is a
complete Bernstein function then the function φ(θ) = (ϕ(1/θ))−1 , for
θ ≥ 0, also is a Bernstein function. This assertion is easily proved using
that the potential density associated to ϕ is a completely monotone
function. Thus, given a pair of complete conjugate Bernstein functions
ϕ, ϕ∗ the functions φ, as defined above, and φ∗ constructed analogously,
form also a conjugate pair of complete Bernstein functions. So that
having knowledge of the parent processes and scale functions associated
to ϕ and ϕ∗, respectively, one can construct a new family of conjugate
parent processes and scale functions.

6 Concrete examples
The previous sections have essentially consisted of re-dressing the theory
of Bernstein functions in the language of scale functions. In this section
we justify the value of the previous exposition by offering a large cache of
remarkably explicit examples.

Example 1

Our first example will not be as interesting as other examples and has been
included principally for the purpose of illustrating how the theory works in
the context of an ‘old favorite’.

Consider the, apparently trivial, Bernstein function

φ(θ) = κ+ dθ

where d, κ > 0. This is the Laplace exponent of the ladder height process
with a parent process consisting of a Brownian motion with coefficient

√
2d

drift at rate κ,
ψ(θ) = κθ + dθ2, θ ≥ 0.

18



 
 

This process is a diffusion and gives us an example where its scale function as
a spectrally negative Lévy process coincides precisely with its scale function
as a diffusion. We have by a simple Laplace inversion

W (x) =
1

κ
(1− e−xκ/d), x ≥ 0.

This tells us that d∗ = 0, W ′(x) = κ∗ + Υ∗(x,∞) = d−1e−xκ/d and hence
κ∗ = 0. Regarding the conjugate parent process, it is clear that

Π∗(−∞,−x) =
κ

d2
e−xκ/d, x > 0.

and so the latter has a compound Poisson jump structure with negative
exponentially distributed jumps having parameter κ/d and arrival rate κ/d2.
Since κ∗ = d∗ = 0 the conjugate parent process is an oscillating process with
no Gaussian component and hence one may write down from this information
directly

ψ∗(θ) =
1

d
θ − κ

d2

(
1− κ/d

θ + κ/d

)
.

After a little algebra one finds that this coincides with the expected expres-
sion given by ψ∗(θ) = θ2/φ(θ). It follows from Theorem 2 that the scale
function associated to ψ∗ is given by

W ∗(x) = d + κx, x ≥ 0.

So that W ∗ is an ultimately linear scale function, thus its associated potential
density is ultimately constant and so it is closely related to the potential
measures appearing in Section 3 in [59]. Finally by the Continuity Theorem
for Laplace transforms it follows that the the scale functions are continuous
in the Lévy triple (κ, d,Υ). For this reason as κ → 0 the scale functions
W and W ∗ converge towards the scale functions x 7→ x/d, and x 7→ d, for
x > 0, respectively. Which provide two more examples of ultimately linear
scale functions.

Example 2

Let β, c > 0, ν ≥ 0 and λ ∈ (0, 1). We claim that

φ(θ) =
cβθΓ(ν + βθ)

Γ(ν + βθ + λ)
, θ ≥ 0,
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is a Bernstein function where Γ(u) denotes the usual Gamma function with
parameter u > 0. In order to determine the triple (κ, d,Υ) in (6) associated
with φ let us recall that the Beta function is related to the Gamma function
by the following formula, for a, b > 0

B(a, b) :=

∫ 1

0

xb−1(1− x)a−1dx =
Γ(a)Γ(b)

Γ(a+ b)
.

We thus have that

φ(θ) =
cβθ

Γ(λ)
B(βθ + ν, λ), θ ≥ 0.

Then making a change of variable in the expression for the Beta function we
reach the identity

φ(θ)

θ
=

c

Γ(λ)

∫ ∞

0

e−θze−zν/β
(
1− e−z/β

)λ−1
dz. (18)

This means that κ = d = 0 and

Υ(x,∞) = c
e−x(ν+λ−1)/β

Γ(λ)

(
ex/β − 1

)λ−1
, x > 0.

It is clear from the above expression that Υ has a density which is monotone
decreasing.

In order to determine the potential measure associated to this subordi-
nator observe the following elementary identity:

θ

φ(θ)
=

Γ(ν + βθ + λ)Γ(1− λ)

cβΓ(ν + βθ + 1)

ν + βθ

Γ(1− λ)
. (19)
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Therefore, we have that

θ

φ(θ)
=

ν + βθ

cβΓ(1− λ)

∫ 1

0

xν+βθ−1xλ(1− x)−λdx

=
λ

cβΓ(1− λ)

∫ 1

0

1

x2
(1− xν+βθ)

(
1

x
− 1

)−λ−1

dx

=
λ

cβΓ(1− λ)

∫ ∞

0

(1− e−(ν+βθ)z) (ez − 1)−λ−1 ezdz

=
λ

cβΓ(1− λ)

∫ ∞

0

(
1− e−νz

) ez

(ez − 1)λ+1
dz

+
λ

cβΓ(1− λ)

∫ ∞

0

(
1− e−βθz

) ez(1−ν)

(ez − 1)λ+1
dz

=
Γ(ν + λ)

cβΓ(ν)
+

λ

cβΓ(1− λ)

∫ ∞

0

(
1− e−βθz

) ez(1−ν)

(ez − 1)λ+1
dz.

=
Γ(ν + λ)

cβΓ(ν)
+

λ

cβ2Γ(1− λ)

∫ ∞

0

(
1− e−θx

) ex(1−ν)/β

(ex/β − 1)
λ+1

dx.

(20)

This shows that φ is a special Bernstein function whose conjugate φ∗ has
triplet (κ∗, d∗,Υ∗) (cf. (8)) given by κ∗ = Γ(ν + λ)/cβΓ(ν), d∗ = 0 and

Υ∗(dx) =
λ

cβ2Γ(1− λ)

ex(1−ν)/β

(ex/β − 1)
λ+1

dx

Note that Υ∗ has a decreasing density. Referring back to Theorem 2 and
Corollary 1 we may now say the following.

There exists an oscillating spectrally negative Lévy process with Laplace
exponent

ψ(θ) =
cβθ2Γ(ν + βθ)

Γ(ν + βθ + λ)
, for θ ≥ 0

which has no Gaussian component and its Lévy measure, Π, satisfies

Π(−∞,−x) =
c(ν + λ− 1)

β

e−x(ν+λ−1)/β

Γ(λ)

(
ex/β − 1

)λ−1

+
c(λ− 1)

β

e−x(ν+λ)/β

Γ(λ)

(
ex/β − 1

)λ−2
for x > 0
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and the associated scale function is given by

W (x) =
Γ(ν + λ)

cβΓ(ν)
x+

∫ x

0

{∫ ∞

y

λ

cβ2Γ(1− λ)

ez(1−ν)/β

(ez/β − 1)
λ+1

dz

}
dy (21)

for x ≥ 0.
There exists a spectrally negative Lévy process which drifts to ∞ or

oscillates according to whether ν > 0 or ν = 0, with Laplace exponent

ψ∗(θ) =
θΓ(ν + βθ + λ)

cβΓ(ν + βθ)
for θ ≥ 0 (22)

which has no Gaussian component and whose Lévy measure, Π∗, satisfies

Π∗(−∞,−x) =
λ

cβ2Γ(1− λ)

ex(1−ν)/β

(ex/β − 1)
λ+1

for x > 0

and the associated scale function is given by

W ∗(x) =

∫ x

0

c
e−z(ν+λ−1)/β

Γ(λ)

(
ez/β − 1

)λ−1
dz.

Note in the special case that ν = 0 and β = c = 1 we have the two
conjugate scale functions

W (x) =
1

Γ(1− λ)

∫ x

0

(ey − 1)−λdy

and
W ∗(x) =

1

Γ(λ)

∫ x

0

(1− e−z)λ−1dz.

Another special case worthy of remark is the case where ν = 1 = β,
c = Γ(1 + λ). The Laplace exponent ψ∗ takes the form

ψ∗(θ) =
Γ(θ + α)

Γ(θ)Γ(α)
, θ ≥ 0,

where α = 1 + λ ∈ (1, 2). It was shown in Chaumont et al. [16] that this is
the Laplace exponent of a spectrally negative Lévy process. The associated
scale function, also identified in the latter paper, may simply be written

W ∗(x) = (1− e−x)α−1, x ≥ 0.
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The previous calculations can be used to provide an example of the technique
developed in Section 4. For c, ν > 0, λ ∈]0, 1[, let Ψ be the function defined
by means of

Ψ(θ) = (θ − ν)
Γ(θ + λ)

cΓ(θ)
, θ ≥ 0.

It follows from the previous discussion, that the function Φ defined by

Φ(θ) =
Γ(θ + λ)

cΓ(θ)
, θ ≥ 0,

is the Laplace exponent of a subordinator such that its Lévy measure has
a decreasing density and its potential measure has a decreasing and convex
density. According to our discussion in Section 4 and the previous facts
it follows that Ψ(θ) is the Laplace exponent of a spectrally negative Lévy
process that drifts to −∞, and its scale function is given by

W (x) =
ceνx

Γ(λ)

∫ x

0

e−νz(1− e−z)λ−1dz, x ≥ 0.

This is due to the fact that the Lévy process with Laplace exponent Ψ con-
ditioned to drift to ∞ has Laplace exponent

Ψν(θ) = Ψ(θ + ν) =
θΓ(θ + λ+ ν)

cΓ(θ + ν)
, θ ≥ 0.

Moreover, the conjugate parent and ladder height process have Laplace ex-
ponent given by

Φ∗(θ) =
cθΓ(ν + θ)

Γ(ν + λ+ θ)
, Ψ∗(θ) =

cθ2Γ(ν + θ)

Γ(ν + λ+ θ)
, θ ≥ 0,

so that their characteristics were discussed before, and the corresponding
scale function is described in equation (21), taking β = 1. The Laplace
exponent Ψ can be taught as the one of the parent process with Laplace
exponent ψ∗, as in equation (22), conditioned to drift to −∞. The particular
case where ν = 1 = β, has been studied in [16].

Example 3

Let 0 < α ≤ β ≤ 1, a, b > 0 and φ be the Bernstein function defined by

φ(θ) = aθβ−α + bθβ, θ ≥ 0.
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That is, in the case where α < β < 1, φ is the Laplace exponent of a subordi-
nator which is obtained as the sum of two independent stable subordinators
one of parameter β − α and the other of parameter β, respectively, so that
the killing and drift term of φ are both equal to 0, and its Lévy measure is
given by

Υ(dx) =

(
a(β − α)

Γ(1− β + α)
x−(1+β−α) +

bβ

Γ(1− β)
x−(1+β)

)
dx, x > 0.

If α = β < 1 then φ is the Laplace exponent of a stable subordinator
killed at rate a; when α < β = 1, φ is the Laplace exponent of a stable
subordinator with positive drift b; and finally in the case where α = 1 = β, φ
is simply the Laplace exponent of a pure drift subordinator killed at rate a.
The latter case will be excluded because it has been discussed in Example 1.
In all cases the underlying Lévy measure has a density which is completely
monotone, and thus its potential density, or equivalently the density of the
associated scale function W , is completely monotone.

In the remainder of this example and subsequent examples we shall make
heavy use of the two parameter Mittag-Leffler function defined by

Eα,β(x) =
∑
n≥0

xn

Γ(nα + β)
, x ∈ R.

where α, β > 0. The latter function can be identified via a pseudo-Laplace
transform. Namely, for λ ∈ R and <(θ) > λ1/α − γ,∫ ∞

0

e−θxe−γxxβ−1Eα,β(λxα)dx =
(θ + γ)α−β

(θ + γ)α − λ
.

The associated scale function to φ can now be identified via

W ′(x) =
1

b
xβ−1Eα,β (−axα/b) , x > 0, (23)

which is a completely monotone function because it is the product of the
completely monotone functions xβ−1 and Eα,β(−xα), and the later is com-
pletely monotone because it is the composition of the completely monotone
function t 7→ Eα,β(−t) for t ≥ 0, see [56], with the Bernstein function xα. So,
the function

ψ(θ) = θφ(θ) = aθβ−α+1 + bθβ+1, θ ≥ 0,
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is the Laplace exponent of a spectrally negative Lévy process. We shall elab-
orate on the features of the aforementioned parent process below according
to three parameter regimes.

In the case α < β < 1, the parent process oscillates and is obtained by
adding two independent spectrally negative stable processes with stability
index β + 1 and 1 + β − α, respectively. The scale function associated to it
is given by

W (x) =
1

b

∫ x

0

tβ−1Eα,β(−atα/b)dt, x ≥ 0.

The associated conjugates are given by

φ∗(θ) =
θ

aθβ−α + bθβ
, ψ∗(θ) =

θ2

aθβ−α + bθβ
, θ ≥ 0,

and
W ∗(x) =

a

Γ(2− β + α)
x1−β+α +

b

Γ(2− β)
x1−β, x ≥ 0.

The subordinator with Laplace exponent φ∗ has zero killing and drift terms
and its Lévy measure is obtained by taking the derivative of the expression
in (23). By Theorem 1 the spectrally negative Lévy process with Laplace ex-
ponent ψ∗, oscillates, has unbounded variation, has zero linear and Gaussian
terms, and its Lévy measure is obtained by derivating twice the expression
in (23).

In the case, α = β < 1, the Laplace exponent ψ takes the form

ψ(θ) = θφ(θ) = aθ + bθβ+1.

The latter is the Laplace exponent of a oscillating spectrally negative α-stable
process with stability index α = (1 + β), and positive drift with rate a. The
scale function can be implicitly found in Furrer [25] and it takes the form

W (x) =
1

a
(1− Eβ,1(−axβ/b)), x ≥ 0.

The respective conjugates are given by

φ∗(θ) =
θ

aθ + bθβ
, ψ∗(θ) =

θ2

aθ + bθβ
, θ ≥ 0,

and
W ∗(x) = ax+

b

Γ(2− β)
x1−β, x ≥ 0.
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The conjugate subordinator and spectrally negative Lévy process, can be
described using similar reasoning to that of the previous parameter regime
and we omit the details. One may mention here that by letting a ↓ 0 the
Continuity Theorem for Laplace transforms tells us that for the case φ(θ) =
bθβ, the associated ψ is the Laplace exponent of a spectrally negative stable
process with stability parameter 1 + β, and its scale function is given by

W (x) =
1

bΓ(1 + β)
xβ, x ≥ 0.

The associated conjugates are given by

φ∗(θ) = b−1θ1−β, ψ∗(θ) = b−1θ2−β, θ ≥ 0,

and
W ∗(x) =

b

Γ(2− β)
x1−β, x ≥ 0.

So that φ∗, respectively ψ∗, corresponds to a stable subordinator of parameter
1 − β, zero killing and drift terms; respectively, to a oscillating spectrally
negative stable Lévy process with stability index 2 − β, and so its Lévy
measure is given by

Π∗(−∞,−x) =
β(1− β)

bΓ(1 + β)
xβ−2, x ≥ 0.

Lastly, in the case α < β = 1, the Laplace exponent of the parent process,
ψ, is associated to the addition of a spectrally negative stable process with
stability index 2 − α plus an independent continuous Lévy process with no
drift and Gaussian coefficient equal to

√
b. Its associated scale function is

given by

W (x) =
1

b

∫ x

0

Eα,1(−atα/b)dt, x ≥ 0.

The respective conjugates are given by

φ∗(θ) =
θ

aθ1−α + bθ
, ψ∗(θ) =

θ2

aθ1−α + bθ
, θ ≥ 0,

and
W ∗(x) = b+

axα

Γ(1 + α)
, x ≥ 0.
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The characteristics of conjugate parent process can be determined as in the
other two parameter regimes but what is different is that it is a process with
bounded variation since W ∗(0) = d = b > 0.

To complete this example, observe that the change of measure introduced
in Lemma 1 allows us to deal with the Bernstein function

φ(θ) = k(θ +m)β−α + b(θ +m)β, θ ≥ 0,

where m ≥ 0 is a fixed parameter. In this case we get that there exists a
spectrally negative Lévy process whose Laplace exponent is given by

ψ(θ) = kθ(θ +m)β−α + bθ(θ +m)β, θ ≥ 0,

and its associated scale function is given by

W (x) =
1

b

∫ x

0

e−mttβ−1Eα,β(−atα/b)dt, x ≥ 0.

The respective conjugates can be obtained explicitly but we omit the details
given that the expressions found are too involved.

As in the Example 2, the degree of generality on which this example
has been developed allows us to provide another example of the technique
developed in Section 4. For, m, a, b > 0, 0 < α ≤ β ≤ 1, there exists a parent
process drifting to −∞ and with Laplace exponent

Ψ(θ) = (θ −m)
(
aθβ−α + bθβ

)
, θ ≥ 0.

It follows from the previous calculations that the scale function associated
to the parent process with Laplace exponent Ψ is given by

W (x) =
emx

b

∫ x

0

e−mttβ−1Eα,β(−atα/b)dt, x ≥ 0.

Finally observe that the function defined in (23) is a completely monotone
function, which would have allowed us to present this example performing
the construction indicated in the Remark 3 in Section 5.

Example 4

This example builds on the work of Boxma and Cohen [13] and the gener-
alization thereof by Abate and Whitt [1]. In the latter, a parent process is
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considered whose Laplace exponent satisfies

ψ(θ) = θ − λθ

(µ+
√
θ)(1 +

√
θ)
, θ ≥ 0.

This corresponds to a process which has a linear unit drift minus a compound
Poisson process of rate λ with jumps whose distribution, F , has Laplace
transform 1 − θ/(µ +

√
θ)(1 +

√
θ). Let η(x) = exerfc(

√
x). The tail of the

jump distribution satisfies

F (x,∞) =

(
1

1− µ

)
(η(x)− µη(xµ2))

which in the case µ = 1 should be interpreted in the limiting sense so that

F (x,∞) = (2x+ 1)η(x)− 2

√
x

π
, x ≥ 0.

In both cases, the distribution also has mean 1/µ and hence the mean of the
Lévy process is 1− λ/µ which is assumed to be strictly positive (so that the
process drifts to infinity). We may thus identify the characteristics of the
Laplace exponent, φ, of the descending ladder height process. Specifically
κ = 1/µ, d = 0 and Υ(dx) = λF (x,∞)dx. The scale function associated
with φ is given in [1] by

W (x) =
1

1− λ/µ

(
1− λ/µ

ν1 − ν2

(ν1η(xν
2
2)− ν2η(xν

2
1))

)
.

where

ν1,2 =
1 + µ

2
±

√(
1 + µ

2

)2

−
(

1− λ

µ

)
µ.

Conveniently it is shown in [1] that F (x,∞) is completely monotone which
makes φ a complete Bernstein function. Moreover we automatically we get
the existence of a conjugate complete scale function

W ∗(x) =
1

µ
x+

∫ x

0

{∫ ∞

y

(η(z)− µη(zµ2))

1− µ
dz

}
dy

(with the obvious interpretation when µ = 1). The associated parent process
has Laplace exponent

ψ∗(θ) =
θ2(µ+

√
θ)(1 +

√
θ)

(µ− λ) + θ + (1 + µ)
√
θ
.
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It is not difficult to show that W (0+) = 1 and hence d∗ = 1 showing that
the conjugate parent process has a Gaussian component with coefficient

√
2.

As usual, Π∗(−∞,−x) may be computed by considering W ′(x) −W ′(+∞)
which happens, in this case, to be a rather cumbersome expression but, none
the less, explicit.

Example 5

Let α ∈ (0, 1), κ > 0, d ≥ 0, c > 0 and φ be the Bernstein function defined
by

φ(θ) = κ+ dθ + cθα, θ ≥ 0. (24)

(Although the case d = 0 has been treated in Example 3 we include it here
again because a different approach is proposed.) That is, φ is the Laplace
exponent of a subordinator which is a α-stable subordinator with drift d
killed at rate κ. In this case

ψ(θ) = κθ + dθ2 + cθ1+α, θ ≥ 0,

so that the parent Lévy process associated to φ drifts to ∞ and is the sum
of an independent Gaussian process with drift and a (1 + α)-stable process.
Given that the Lévy measure of φ has a density which is completely mono-
tone it follows that its potential measure in (0,∞) has a density which is
completely monotone, which we will next describe. Let X be an α-stable
subordinator, eκ be an exponential random variable of parameter κ, and as-
sume that X and eκ are independent. Observe that the random variable
Z = e

1/α
κ Xc + deκ has a density and its Laplace transform has the form

E(e−θZ) =
κ

φ(θ)
, θ ≥ 0.

It follows that the scale function, W , associated to φ has density given by
W ′(x) = hZ(x)/κ where hZ is the density of Z and can be written using
that Xc

law
= c1/αX1 in terms of the density of X1, say pα, or in terms of the

Mittag-Leffler function, following if d > 0 or d = 0, respectively, as follows

hZ(x) =


κ
c

∫ xc/d

0
e−

κ
c
spα

(
x−d

c
s

s1/α

)
ds

s1/α , if d > 0

(−1)
dEα,1(−κ

c
xα)

dx
= κ

c
xα−1Eα,α

(
−κ

c
xα

)
, if d = 0,

x > 0;
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owing to the fact that the Laplace transform of X−α
1 , is given in terms of the

Mittag-Leffler function. An expression for the density pα in series form can
be found in equation (14.31) of Sato [55]. It follows that the scale function
associated to the spectrally negative Lévy process with Laplace exponent ψ
is given by P(Z ≤ x)/κ. That is to say

W (x) =

{
c
κ

(
1− e−κx/d

)
+ c

d
e−κx/d

∫ x

0
eκu/dP(X1 > u)du, if d > 0

1
κ

(
1− Eα,1

(
−κ

c
xα

))
, if d = 0

(25)

for x ≥ 0. The conjugate Laplace exponent φ∗ has zero drift and killing
terms and its Lévy measure is described by Υ∗(x,∞) = W ′(x), x > 0, the
conjugate parent process oscillates and has Laplace exponent given by

ψ∗(θ) =
θ2

κ+ dθ + cθα
, θ ≥ 0.

Finally, the conjugate scale function is given by

W ∗(x) = d + κx+
c

Γ(2− α)
x1−α, x ≥ 0.

In the sequel fix γ, c > 0, d, κ ≥ 0, α ∈ (0, 1). We would like to determine
the scale function associated to the Bernstein function

φγ(θ) = κ+ dθ + c(θ + γ)α − cγα, θ ≥ 0. (26)

To that end assume first that κ > dγ + cγα, and then observe that

φγ(θ) = φ(θ + γ), θ ≥ 0,

where φ has the form (24) with killing term κ − dγ − cγα. Note that φγ is
the Laplace exponent of the subordinator with killing term κ, drift term d
and Lévy measure

Υγ(dx) =
cαe−γx

Γ(1− α)x1+α
dx, x > 0.

Note the density given above is the product of completely monotone functions
and hence is itself completely monotone thus making φγ a complete Bernstein
function. The associated scale function, Wγ, has a density in (0,∞) which
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is given by W ′
γ(x) = e−γxW ′(x). It follows from (25) and the fact that

d∗γ = limθ↑∞ 1/φγ(θ) = 0, κ∗ = limθ→0 φ
∗
γ(θ) = limθ→0

θ
φ(θ)

= 0,

Wγ(x) =


1
c

∫ x

0
e−γy

(∫ yc/d

0
e−

κ−dγ−γα

c
spα

(
y−d

c
s

s1/α

)
ds

s1/α

)
dy, if d > 0,

1
c

∫ x

0
e−γyyα−1Eα,α

(
− (κ−cγα)

c
yα

)
dy, if d = 0,

(27)

for x ≥ 0. These also gives some insight about the form of the scale function
for any value of κ, γ, c > 0. Indeed, integrating directly in the case d > 0,
and term by term in the case d = 0, it is easily seen that for any κ, c > 0,
and γ ≥ 0 the function

1
c
e−γy

∫ yc/d

0
e−

κ−dγ−γα

c
spα

(
y−d

c
s

s1/α

)
ds

s1/α , if d > 0,

1
c
e−γyyα−1Eα,α

(
− (κ−cγα)

c
yα

)
, if d = 0,

y ≥ 0

has Laplace transform 1/φγ(θ), with φγ as defined in (26). So, for any α ∈
(0, 1), κ, c, γ > 0, d ≥ 0, the scale function associated to φγ is given by (27).

On account of the continuity theorem of Laplace transforms, the scale
function W is continuous in the Lévy triple (κ, d,Υ). For this reason, when
d = 0, taking further κ ↓ 0, we recover from (27)

Wγ(x) =
1

c

∫ x

0

e−γyyα−1Eα,α(γαyα)dy

which is one of the scale functions found in [30].
The conjugate scale function W ∗

γ is easily computed taking account of the
Lévy triple associated with φγ to be

W ∗
γ (x) = d + κx+

cα

Γ(1− α)

∫ x

0

{∫ ∞

y

e−γz

z1+α
dz

}
dy

Observe that taking c = λ/α in the definition of φγ, in (26), and making
α tend to 0, we get that

lim
α→0

(
κ+ dθ +

λ

α
((θ + γ)α − γα)

)
= k + dθ + λ log

(
1 +

θ

γ

)
, θ ≥ 0.

So, by the continuity of Laplace transforms it follows that the scale function
Wγ converges as α→ 0 to the scale function corresponding to the Bernstein
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function k + dθ + λ log
(
1 + θ

γ

)
, which is studied in the case κ = 0 = d,

γ = 1, in the forthcoming Example 7.
A different approach to this example would start with the Bernstein func-

tion in (25), which by the second remark following Corollary 2 we know is
the scale function associated to some spectrally negative Lévy process, and
then determine its associated parent process, ladder height process and con-
jugates.

Example 6

Another example belonging to a related family of Bernstein functions to those
of the previous example starts again with calculations found in [30]. We take

φ(θ) = κ+ λ

(
1−

(
γ

γ + θ

)ν)
, θ ≥ 0,

where κ, λ > 0. For this φ we also have d = 0 and

Υ(dx) =
λγν

Γ(ν)
xν−1e−γxdx, x > 0,

where ν ∈ (0, 1) and γ > 0. Note that the assumption on ν ensures that
Υ has a non-increasing density and hence φ may be used as a descending
ladder height process. This Bernstein function is the Laplace exponent of a
killed compound Poisson subordinator with Gamma distributed jumps. It
can actually be seen as an extension to negative values for the parameter α
in the definition of the Bernstein function considered in Example 5. It is also
a complete Bernstein function on account of the fact that Υ has a completely
monotone density. In [30] it was shown that

W (x) =
1

λ+ κ
+

ργν

λ+ κ

∫ x

0

e−γyyν−1Eν,ν(ργ
νyν)dy

where ρ = λ/(λ+ κ).
Thanks to the fact that φ is a complete Bernstein function, its conjugate

φ∗ may also be used to construct a scale function. From the above description
of W one establishes in a straightforward way that κ∗ = 0, d∗ = 1/(κ + λ)
and

Υ∗(x,∞) =
ργν

λ+ κ
e−γxxν−1Eν,ν(ργ

νxν)
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and so
W ∗(x) = κx+

λγν

Γ(ν)

∫ x

0

{∫ ∞

y

zν−1e−γzdz

}
dy.

It follows that the respective conjugate parent processes have Laplace
exponents

ψ(θ) = κθ + λθ

(
1−

(
γ

γ + θ

)ν)
and ψ∗(θ) =

θ2

κ+ λ
(
1−

(
γ

γ+θ

)ν) .
Moreover, the parent process associated with φ drifts to ∞, has no Gaussian
component and jump measure satisfying

Π(−∞,−x) =
λγν

Γ(ν)
xν−1e−γx, for x > 0.

The conjugate parent process oscillates, has a Gaussian coefficient σ∗ =√
2/(λ+ κ) and its jump measure satisfies∫ ∞

x

Π∗(−∞,−y)dy =
ργν

λ+ κ
e−γxxν−1Eν,ν(ργ

νxν), x > 0.

Note that although it has been assumed that κ > 0, since both scale
functions are continuous in their parameters through their Laplace transform,
it follows that one may simply take limits as κ ↓ 0 to include κ = 0 in the
parameter ensemble. In the latter case, the parent process will oscillate as
opposed to drifting to ∞.

Example 7

For α ∈ (0, 1], λ > 0, now we take

φ(θ) = λ log(1 + θα), θ ≥ 0.

In the case that α = 1, φ is the Laplace exponent of a Gamma subordinator.
In the case that α ∈ (0, 1) this is the Laplace exponent of an α-subordinator,
subordinated by a Gamma subordinator. A subordinator with φ as Laplace
exponent is usually called Linnik subordinator. For this Laplace exponent
one may show that κ = d = 0 and

Υ(dx) = αλ
Eα,1(−x)

x
dx, x > 0.
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Note that φ is a complete Bernstein function as soon as one recalls that
Eα,1(−x) (cf. [52]) and 1/x are completely monotone and that the product of
completely monotone functions is completely monotone. The scale function
associated with φ is unknown. None the less, from the discussion in Section
5 we see that the conjugate φ∗ has a Lévy measure Υ∗ which is absolutely
continuous with non-increasing density. Hence it follows from Corollary 1
that there exists a spectrally negative Lévy process with Laplace exponent

ψ∗(θ) =
θ2

λ log(1 + θα)
, θ ≥ 0,

whose associated scale function is

W ∗(x) = αλ

∫ x

0

{∫ ∞

y

Eα,1(−z)
z

dz

}
dy, x ≥ 0.

It was shown in Hubalek and Kyprianou [30] that for the case α = 1

W (x) = λ

∫ x

0

e−y

{∫ ∞

0

yt−1

Γ(t)
dt

}
dy, x ≥ 0.

It follows from the latter that d∗ = 0. Since φ∗(θ) = θ/λ log(1 + θ), an easy
limit as θ ↓ 0 shows that κ∗ = 1 and hence from the expression given for W

Υ∗(x,∞) = λe−x

∫ ∞

0

xt−1

Γ(t)
dt− 1, x > 0.

It now follows that the conjugate parent process drifts to ∞, has no Gaussian
component and, formally, Theorem 1 tells us that Π∗ satisfies∫ ∞

x

Π∗(−∞,−y)dy = λe−x

∫ ∞

0

xt−1

Γ(t)
dt, x > 0.

Example 8

This example is built again on discussion found in [58]. Suppose we take

φ(θ) = log{(1 + θ) +
√

(1 + θ)2 − 1}, θ ≥ 0.

This is a Bernstein function which has κ = d = 0 and

Υ(dx) =
e−x

x
I0(x)dx, x > 0,
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where Iν is the modified Bessel function of index ν. It is known that the
density of Υ is the Laplace transform of

γ(dy) =

{∫ y

0

1

π
(2z − z2)−1/21{z∈(0,2)}dz

}
dy, y > 0,

and hence φ is a complete Bernstein function. Following the reasoning in the
previous example, we have the existence of an oscillating spectrally negative
Lévy process with Laplace exponent

ψ∗(θ) =
θ2

log{(1 + θ) +
√

(1 + θ)2 − 1}

for θ ≥ 0, whose scale function is given by

W ∗(x) =

∫ x

0

{∫ ∞

y

e−z

z
I0(z)dz

}
dy, x ≥ 0.

In [58] one also finds that the transition density of the subordinator, H,
associated with φ is known and specifically is given by

P(Ht ∈ dx) =
t

x
It(x)e

−x

and hence from (4) it follows that

W (x) =

∫ x

0

e−y

y

{∫ ∞

0

tIt(y)dt

}
dy.

Clearly we may now say that d∗ = 0 and moreover from the fact that φ∗(θ) =
θ/φ(θ), taking limits as θ ↓ 0 tells us also that κ∗ = 0. Moreover the
expression for W given above also gives us

Υ∗(x,∞) =
e−x

x

∫ ∞

0

tIt(x)dt, x ≥ 0.

We see then that the conjugate parent process oscillates, has no Gaussian
component and, formally, Theorem 1 tells us that∫ ∞

x

Π∗(−∞,−y)dy =
e−x

x

∫ ∞

0

tIt(x)dt, x > 0.
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